在量子力學(xué)里,相互作用繪景(interaction picture),是在薛定諤繪景與海森堡繪景之間的一種表述,為紀(jì)念物理學(xué)者保羅·狄拉克而又命名為狄拉克繪景。在這繪景里,描述量子系統(tǒng)的態(tài)矢量與表達(dá)可觀察量的算符都會(huì)隨著時(shí)間流易而演化。有些實(shí)際案例會(huì)涉及到因相互作用而使得量子態(tài)與可觀察量發(fā)生改變,這類案例通常會(huì)使用狄拉克繪景。1
定義為了便利分析,位于下標(biāo)的符號 分別標(biāo)記海森堡繪景、狄拉克繪景、薛定諤繪景。通過對于基底的一種幺正變換,算符和態(tài)矢量在狄拉克繪景里的形式與在薛定諤繪景里的形式相關(guān)聯(lián)。
在量子力學(xué)里,對于大多數(shù)案例的哈密頓量,通常無法找到薛定諤方程的精確解,只有少數(shù)案例可以找到精確解。因此,為了要能夠解析其它沒有精確解的案例,必須將薛定諤繪景里的哈密頓量分成兩個(gè)部分,2
其中,
有精確解,有廣泛知悉的物理行為,而
則通常沒有精確解,是對于系統(tǒng)的攝動(dòng)。
假若哈密頓量 含時(shí)(例如,感受到時(shí)變外電場作用的量子系統(tǒng),其哈密頓量會(huì)含時(shí)),則通常會(huì)將顯性含時(shí)部分放在
里。這樣,
不含時(shí),而時(shí)間演化算符U(t)的公式可以簡單地表示為
其中,t是時(shí)間。
假若對于某些案例, 應(yīng)該設(shè)定為含時(shí),則時(shí)間演化算符的公式會(huì)變得較為復(fù)雜:
本條目以下內(nèi)容假設(shè)
不含時(shí)。
態(tài)矢量在狄拉克繪景里,態(tài)矢量 定義為
其中,
是在薛定諤繪景里的態(tài)矢量。
由于在薛定諤繪景里, 態(tài)矢量 與時(shí)間的關(guān)系為
所以,在
對易的條件下,可以有
算符在狄拉克繪景里的算符 定義為
其中,
是在薛定諤繪景里對應(yīng)的算符。
時(shí)間演化方程以下內(nèi)容,算符 都簡略標(biāo)記為
。
量子態(tài)從態(tài)矢量的定義式,可以得到態(tài)矢量對于時(shí)間的導(dǎo)數(shù)是
將算符的定義式代入,可以得到
這是施溫格-朝永振一郎方程的一個(gè)較為簡單的形式。
算符假若算符 不含時(shí),則其對應(yīng)的
的時(shí)間演化為
這與在海森堡繪景里,算符 的時(shí)間演化類似:
密度矩陣應(yīng)用施溫格-朝永振一郎方程于密度矩陣,則可得到
各種繪景比較各種繪景隨著時(shí)間流易會(huì)呈現(xiàn)出不同的演化:3
|| ||
本詞條內(nèi)容貢獻(xiàn)者為:
杜強(qiáng) - 高級工程師 - 中國科學(xué)院工程熱物理研究所