在航天動力學和宇宙空間動力學中,所謂的重力助推(也被稱為重力彈弓效應或繞行星變軌)是利用行星或其他天體的相對運動和引力改變飛行器的軌道和速度,以此來節(jié)省燃料、時間和計劃成本。重力助推既可用于加速飛行器,也能用于降低飛行器速度。
原理解釋行星的重力助推作用能夠改變飛行器相對于太陽的速度,但由于必須遵守,所以它和行星間的相對速度并沒有改變。在飛行器第一次從遠距離接近行星時,產(chǎn)生的運動效果就像該飛行器被行星反彈開了??茖W家們稱這種情況為彈性碰撞,不過兩者之間并沒有發(fā)生實體接觸。
假設你是一個靜止的觀測者,那么你就會看到:行星以速度U向左運動,飛行器以速度v向右運動。由于兩者的運動方向相反,所以當飛行器運行至行星右側(cè)時,其軌道就會發(fā)生彎曲,進而以U+v的相對速度(相對于行星表面)運行。當飛行器脫離環(huán)行星軌道時,其相對于行星表面的速度仍然為U+v,但是此時的運動方向與原來相反——即向左運動。而由于行星本身正以速度U向左運動,所以在觀測者看來,飛行器正以2U+v的速度向左運行——其速度提升幅度為2U,即行星運行速度的兩倍。由于未考慮軌道的各種細節(jié),所以這是一個過于簡單化的模型。但是事實證明如果飛行器沿雙曲線軌道運行,則其無需啟動引擎既可從相反方向離開行星,同時只要其脫離了該行星引力的控制,那么它就可以獲得2U的加速度。該理論看似違背了能量守恒和動量守恒定律,但這是由于我們忽略了飛行器對行星的影響。飛行器獲得的線性動量在數(shù)值上等同于行星失去的線性動量,不過由于行星的巨大質(zhì)量,使得這種損失對其速度的影響可以忽略不計。
在現(xiàn)實宇宙空間中飛行器與行星的相遇實際上會出現(xiàn)兩個維度上的因素。在上述理論所提供的案例中,由于要求提高飛行器的速度,所以需要實現(xiàn)的是矢量增益,如右圖所示。同時,重力助推也能被用于降低飛行器的速度。1974年的水手10號以及后來的信使號即通過重力助推實現(xiàn)了減速,兩者都是飛往水星的探測器。如果飛行器需要獲得更多的加速度,最經(jīng)濟的做法是當其位于行星近拱點時點燃火箭?;鸺茷轱w行器提供的加速度總是相同的,但是它引起的動能變化則與飛行器的實時速度成正比。所以為了從火箭助推中獲得最大動能,火箭必須在飛行器速度最大時——即處于近拱點時點火。在奧伯特效應中該技術(shù)得到了詳細闡釋。
奧伯特效應如上所述,從重力助推中獲得更多能量的既定方法是在近拱點點燃火箭——此時飛行器擁有最大速度。
不管飛行器本身的速度為多少,火箭引擎提供的推進力總是相同的?;鸺茖τ谧饔们昂蠖检o止不動的物體并不會產(chǎn)生任何有效效果;火箭所儲存的能量完全被用于推進。而當火箭和有效負載被推進時,在任何時間段里火箭推進施加給有效負載的推進力總是通過火箭和有效負載被推進的距離實現(xiàn)效果的,在物理學上這被稱為機械能或功。所以在既定的時間段里火箭和有效負載被推進得越遠,那么它們的運行速度也就越快,它們自身所包含的動能也就越大。(這也就是為何很少使用火箭推進低速運行的飛行器,這樣做的效率十分低下。)
在火箭推進中,能量仍然是守恒的。由于火箭所增加的速度是從被噴出的推進燃料的速度中扣除的,所以有效負載和火箭所增加的能量等于被噴出的推進燃料損失的能量。因此飛行器運動得越快,火箭推進的效果就越顯著。
所以對于速度隨時間變化的飛行器,如果想要盡最大可能增加其動能,則需要在其速度最快時進行火箭推進。在重力推進過程中,速度最大值出現(xiàn)在近拱點,即軌道中最接近行星的一點,當飛行器到達這一點時,即開始使用火箭推進。
另一種使用火箭推進的方法是當飛行器進入或擺脫行星引力控制區(qū)域時進行火箭點火,這樣也能夠使飛行器從推進燃料中獲取較大動能。
也有人提議讓飛行器到達行星的最接近點,此時利用氣動升力作用實現(xiàn)空氣-重力推進,從而完成更大程度上的撓曲并獲取更多的動能。
歷史淵源最初提出重力助推法的科學家是蘇聯(lián)的尤里·康德拉圖克(Кондратюк, Юрий Васильевич)。他在所署時間為‘1918-1919’ 的論文‘Тем кто будет читать, чтобы строить’(《致有志于建造星際火箭而閱讀此文者》) 中提出在兩顆行星間飛行的飛船可以使用兩行星衛(wèi)星的重力實現(xiàn)軌道初段的加速和軌道末段的減速。
弗里德里?!ふ驳?Friedrich Zander)在其1925年的論文‘Проблема полета при помощи реактивных аппаратов: межпланетные полеты’(《星際飛行中噴氣推進的問題》) 中也提出了類似的構(gòu)想。1
但是兩者都未能意識到行星沿飛行器軌道施加的重力助推能夠推進飛行器從而減少飛行器星際間飛行的燃料消耗。 這一設想由麥可·米諾維奇(Michael Minovitch)于1961年提出。2
1959年,重力推進法得到了首次應用,當時蘇聯(lián)的偵測器月球3號使用該法運行至月球背面并拍攝了該區(qū)域的照片。當時這一操作流程由克爾德什應用數(shù)學研究所所設計。
使用原因在太陽系中,由于飛往內(nèi)行星的飛行器的軌道方向是朝向太陽的,所以其可以獲得加速度;而飛往外行星的飛行器由于是背向太陽飛行的,故其速度會逐漸降低。
雖然內(nèi)行星的軌道運行速度要比地球的快得多,但是飛往內(nèi)行星的飛行器由于受到太陽引力作用而獲得加速,其最終速度仍遠高于目標行星的軌道運行速度。如果飛行器只是計劃飛掠該內(nèi)行星,就沒有必要為飛行器降速。但是如果飛行器需要進入環(huán)該內(nèi)行星的軌道,那么就必須通過某種機制為飛行器降速。
同樣的道理,雖然外行星的軌道運行速度要低于地球,但是前往外行星的飛行器在受到太陽引力作用而逐漸減速之后,其最終速度將仍低于外行星的軌道運行速度。所以也必須通過某種機制為飛行器加速。同時,為飛行器加速還能夠減少飛行所耗時間。
使用火箭助推是為飛行器加減速的重要方法之一。但是火箭助推需要燃料,燃料具有重量,而即使是增加很少量的負載也必須考慮使用更大的火箭引擎將飛行器發(fā)射出地球。因為火箭引擎的抬升效果不僅要考慮所增加負載的重量,也必須考慮助推這部分增加的負載質(zhì)量所需的燃料的重量。故而火箭的抬升功率必須隨著負載重量的增加而呈指數(shù)增加。
而使用重力助推法,則飛行器無需攜帶額外的燃料就可實現(xiàn)加減速。此外,條件適宜的情況下,大氣制動也可用來實現(xiàn)飛行器的減速。如果可能,兩種方法可以結(jié)合起來使用,以最大程度的節(jié)省燃料。
例如,在信使號計劃中,科學家們即試用了重力助推法為這艘前往水星的飛行器進行減速,不過由于水星基本上不存在大氣,所以無法使用大氣制動來為飛行器減速。
而飛往離地球最近的行星——火星和金星——的飛行器一般使用赫曼轉(zhuǎn)移軌道法,該軌道呈橢圓形,其開始一端與地球相切,末尾一端與目標行星相切。該方法所消耗的燃料得到了盡可能的縮減,但是速度較慢——使用該方法的飛行器從地球達到火星需要1年多的時間(模糊軌道法使用的燃料更少,而速度則更慢)。
如果使用赫曼轉(zhuǎn)移軌道法前往外行星(木星、土星和天王星等),途中可能就要消耗掉數(shù)十年的時間,所需的燃料仍然很多,因為飛行器的航程長達8億公里,同時還要抵抗太陽的引力。而重力助推則提供了一個無需附加燃料即可為飛行器加速的方法。所有飛往外行星的飛行器都使用了該方法。
局限在實際操作中,使用重力助推法的主要局限是行星和其他大質(zhì)量天體并不總是在助推的理想的位置上。例如70年代末旅行者號得以成行的重要原因是當時木星、土星、天王星和海王星都將運行至助推的理想地點,形成了一個隊列。類似的隊列將要到22世紀中期才會再次出現(xiàn)。這是一個極端的例子,但是即使是某些目標較小的計劃,為了等待行星到達理想的位置,也必須空耗去數(shù)年時間。
該方法的另一局限是提供重力助推的行星的大氣。由于引力與距離的平方成反比,所以當飛行器越接近行星時,其所獲得的重力助推效果就越顯著。但是如果飛行器太過于接近行星,從而過于深入行星大氣,那么其損耗的能量將會大于其從行星重力助推中獲得的能量。當然,從另一方面說,該效應也能夠用來實現(xiàn)大氣制動。也有人提出(至今還只是停留于理論階段)當飛行器穿越大氣層時可以利用大氣層的氣動升力為飛行器提供大氣推進力。該方法能夠?qū)w行器的軌道撓曲為一個較之重力助推更大的角度,因此也能夠獲取更多的動能。
使用太陽作為行星間重力助推的天體是不可能的,因為太陽相對于太陽系整體來說是相對靜止的。但是,接近太陽時所獲得的強大推進也和重力推進由相似的效果。該方法能夠極大增加飛行器的動能,但是存在著飛行器是否能夠抵御太陽高溫的問題。
而對于星際間的旅行,使用太陽作為重力助推的星體是可行的,如原本屬太陽系內(nèi)的天體就可在飛掠太陽時獲得推進從而開始它的銀河系之旅,其能量和角動量來自于太陽環(huán)繞銀河運轉(zhuǎn)的軌道。但是這種星際間旅行所需的時間是超出人類可接受范圍的。
該方法的另一個理論上的限制是廣義相對論。如果飛行器接近黑洞的史瓦西半徑,它就需要更多的能量才能從這個極度扭曲的空間中逃逸出來,所耗的能量將會多于從黑洞的重力助推中獲得的能量。
不過,如果一個轉(zhuǎn)動的黑洞的自轉(zhuǎn)軸指向理想的方向,它就有可能提供額外的重力助推效果。廣義相對論預言一個較大的轉(zhuǎn)動天體的附近會出現(xiàn)參考系拖拽現(xiàn)象,即附近的空間被拖拽往天體自轉(zhuǎn)的方向。理論上一顆普通的恒星也會出現(xiàn)這種現(xiàn)象,但是對太陽附近空間所作的觀測至今未能得出確定的結(jié)果。廣義相對論預言在轉(zhuǎn)動的黑洞附近圍繞著一層被稱為能層的空間。在這個空間中物體的正常狀態(tài)仍然無法存在,因為該空間正沿著黑洞自轉(zhuǎn)方向以光速被拖拽著運動。但是彭羅斯機制或許可以為飛行器從能層中獲取能量,雖然這個過程要求飛行器必須將一些“壓倉物”拋入黑洞,這樣飛行器也必須損失一部分由“壓倉物”所攜帶的能量,這部分能量則被黑洞吸收。
本詞條內(nèi)容貢獻者為:
杜強 - 高級工程師 - 中國科學院工程熱物理研究所