版權(quán)歸原作者所有,如有侵權(quán),請聯(lián)系我們

[科普中國]-克羅內(nèi)克函數(shù)

科學(xué)百科
原創(chuàng)
科學(xué)百科為用戶提供權(quán)威科普內(nèi)容,打造知識科普陣地
收藏

在數(shù)學(xué)中,克羅內(nèi)克函數(shù)(又稱克羅內(nèi)克δ函數(shù)、克羅內(nèi)克δ)是一個二元函數(shù),得名于德國數(shù)學(xué)家利奧波德·克羅內(nèi)克??肆_內(nèi)克函數(shù)的自變量(輸入值)一般是兩個整數(shù),如果兩者相等,則其輸出值為1,否則為0。

簡介在數(shù)學(xué)中,克羅內(nèi)克函數(shù)(又稱克羅內(nèi)克δ函數(shù)、克羅內(nèi)克δ) 是一個二元函數(shù),得名于德國數(shù)學(xué)家利奧波德·克羅內(nèi)克??肆_內(nèi)克函數(shù)的自變量(輸入值)一般是兩個整數(shù),如果兩者相等,則其輸出值為1,否則為0。

克羅內(nèi)克函數(shù)的值一般簡寫為 。

克羅內(nèi)克函數(shù)和狄拉克δ函數(shù)都使用δ作為符號,但是克羅內(nèi)克δ用的時候帶兩個下標(biāo),而狄拉克δ函數(shù)則只有一個變量。1

其它記法另一種標(biāo)記方法是使用艾佛森括號(得名于肯尼斯·艾佛森):

同時,當(dāng)一個變量為0時,常常會被略去,記號變?yōu)?img src="https://img-xml.kepuchina.cn/images/newsWire/GdCyOdSYMJA4sV4oQ2q4996AdjyAuVLqqTiM.jpg" alt="" /> :

在線性代數(shù)中,克羅內(nèi)克函數(shù)可以被看做一個張量,寫作 。2

數(shù)字信號處理類似的,在數(shù)字信號處理中,與克羅內(nèi)克函數(shù)等價的概念是變量為 (整數(shù))的函數(shù):

這個函數(shù)代表著一個沖激或單位沖激。當(dāng)一個數(shù)字處理單元的輸入為單位沖激時,輸出的函數(shù)被稱為此單元的沖激響應(yīng)。

性質(zhì)克羅內(nèi)克函數(shù)有篩選性:對任意

如果將整數(shù)看做一個裝備了計數(shù)測度的測度空間,那么這個性質(zhì)和狄拉克δ函數(shù)的定義是一樣的:

實際上,狄拉克δ函數(shù)是根據(jù)克羅內(nèi)克函數(shù)而得名的。在信號處理中,兩者是同一個概念在不同的上下文中的表現(xiàn)。一般設(shè)定 為連續(xù)的情況(狄拉克函數(shù)) ,而使用i,j,k,l,m, andn等變量一般是在 離散的情況下(克羅內(nèi)克函數(shù))。

線性代數(shù)中的應(yīng)用在線性代數(shù)中,單位矩陣可以寫作 。

在看做是張量時(克羅內(nèi)克張量),可以寫作 。

這個(1,1)向量表示:作為線性映射的單位矩陣;跡數(shù);內(nèi)積 ;映射 ,將數(shù)量乘積表示為外積的形式。3

廣義克羅內(nèi)克函數(shù)定義廣義克羅內(nèi)克函數(shù) 矩陣的行列式,以方程式表達為

其中, 是個張量函數(shù),定義為 。

以下列出涉及廣義克羅內(nèi)克函數(shù)的一些恒等式:

其中,是列維-奇維塔符號。

其中,階張量。3

積分表示對任意的整數(shù),運用標(biāo)準(zhǔn)的留數(shù)計算,可以將克羅內(nèi)克函數(shù)表示成積分的形式:

其中積分的路徑是圍繞零點逆時針進行。

這個表示方式與下面的另一形式等價:

參見列維-奇維塔符號

狄拉克測度

同或門

本詞條內(nèi)容貢獻者為:

胡建平 - 副教授 - 西北工業(yè)大學(xué)