版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系我們

[科普中國(guó)]-正態(tài)分布曲線

科學(xué)百科
原創(chuàng)
科學(xué)百科為用戶提供權(quán)威科普內(nèi)容,打造知識(shí)科普陣地
收藏

由來(lái)

正態(tài)分布曲線是指滿足正態(tài)分布的分布曲線。而正態(tài)分布(Normal distribution),也稱“常態(tài)分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二項(xiàng)分布的漸近公式中得到。C.F.高斯在研究測(cè)量誤差時(shí)從另一個(gè)角度導(dǎo)出了它。P.S.拉普拉斯和高斯研究了它的性質(zhì)。是一個(gè)在數(shù)學(xué)、物理及工程等領(lǐng)域都非常重要的概率分布,在統(tǒng)計(jì)學(xué)的許多方面有著重大的影響力。

簡(jiǎn)介正態(tài)分布最早由A.棣莫弗在求二項(xiàng)分布的漸近公式中得到。C.F.高斯在研究測(cè)量誤差時(shí)從另一個(gè)角度導(dǎo)出了它。P.S.拉普拉斯和高斯研究了它的性質(zhì)。2

生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來(lái)描述。例如,在生產(chǎn)條件不變的情況下,產(chǎn)品的強(qiáng)力、抗壓強(qiáng)度、口徑、長(zhǎng)度等指標(biāo);同一種生物體的身長(zhǎng)、體重等指標(biāo);同一種種子的重量;測(cè)量同一物體的誤差;彈著點(diǎn)沿某一方向的偏差;某個(gè)地區(qū)的年降水量;以及理想氣體分子的速度分量,等等。一般來(lái)說(shuō),如果一個(gè)量是由許多微小的獨(dú)立隨機(jī)因素影響的結(jié)果,那么就可以認(rèn)為這個(gè)量具有正態(tài)分布(見(jiàn)中心極限定理)。從理論上看,正態(tài)分布具有很多良好的性質(zhì),許多概率分布可以用它來(lái)近似;還有一些常用的概率分布是由它直接導(dǎo)出的,例如對(duì)數(shù)正態(tài)分布、t分布、F分布等。

定義正態(tài)分布曲線一種概率分布。正態(tài)分布是具有兩個(gè)參數(shù)μ和σ^2的連續(xù)型隨機(jī)變量的分布,第一參數(shù)μ是遵從正態(tài)分布的隨機(jī)變量的均值,第二個(gè)參數(shù)σ2是此隨機(jī)變量的方差,所以正態(tài)分布記作N(μ,σ^2)。3遵從正態(tài)分布的隨機(jī)變量的概率規(guī)律為取μ鄰近的值的概率大,而取離μ越遠(yuǎn)的值的概率越?。沪以叫?,分布越集中在μ附近,σ越大,分布越分散。正態(tài)分布的密度函數(shù)的特點(diǎn)是:關(guān)于μ對(duì)稱,在μ處達(dá)到最大值,在正(負(fù))無(wú)窮遠(yuǎn)處取值為0,在μ±σ處有拐點(diǎn)。它的形狀是中間高兩邊低,圖像是一條位于x軸上方的鐘形曲線。當(dāng)μ=0,σ^2=1時(shí),稱為標(biāo)準(zhǔn)正態(tài)分布,記為N(0,1)。μ維隨機(jī)向量具有類似的概率規(guī)律時(shí),稱此隨機(jī)向量遵從多維正態(tài)分布。多元正態(tài)分布有很好的性質(zhì),例如,多元正態(tài)分布的邊緣分布仍為正態(tài)分布,它經(jīng)任何線性變換得到的隨機(jī)向量仍為多維正態(tài)分布,特別它的線性組合為一元正態(tài)分布。

公式表達(dá)式

參數(shù)定義正態(tài)分布表達(dá)式中有兩個(gè)參數(shù),即期望(均數(shù))μ和標(biāo)準(zhǔn)差σ,σ2為方差。

正態(tài)分布具有兩個(gè)參數(shù)μ和σ^2的連續(xù)型隨機(jī)變量的分布,第一參數(shù)μ是服從正態(tài)分布的隨機(jī)變量的均值,第二個(gè)參數(shù)σ^2是此隨機(jī)變量的方差,所以正態(tài)分布記作N(μ,σ2)。

μ是正態(tài)分布的位置參數(shù),描述正態(tài)分布的集中趨勢(shì)位置。概率規(guī)律為取與μ鄰近的值的概率大,而取離μ越遠(yuǎn)的值的概率越小。正態(tài)分布以X=μ為對(duì)稱軸,左右完全對(duì)稱。正態(tài)分布的期望、均數(shù)、中位數(shù)、眾數(shù)相同,均等于μ。

σ描述正態(tài)分布資料數(shù)據(jù)分布的離散程度,σ越大,數(shù)據(jù)分布越分散,σ越小,數(shù)據(jù)分布越集中。也稱為是正態(tài)分布的形狀參數(shù),σ越大,曲線越扁平,反之,σ越小,曲線越瘦高。

圖形特征****集中性**:**正態(tài)曲線的高峰位于正中央,即均數(shù)所在的位置。

對(duì)稱性:正態(tài)曲線以均數(shù)為中心,左右對(duì)稱,曲線兩端永遠(yuǎn)不與橫軸相交。

均勻變動(dòng)性:正態(tài)曲線由均數(shù)所在處開(kāi)始,分別向左右兩側(cè)逐漸均勻下降。

曲線與橫軸間的面積總等于1,相當(dāng)于概率密度函數(shù)的函數(shù)從正無(wú)窮到負(fù)無(wú)窮積分的概率為1。即頻率的總和為100%。

圖形的面積分布正態(tài)曲線下橫軸上一定區(qū)間的面積反映該區(qū)間的例數(shù)占總例數(shù)的百分比,或變量值落在該區(qū)間的概率(概率分布)。不同 范圍內(nèi)正態(tài)曲線下的面積可用公式計(jì)算。

正態(tài)曲線下,橫軸區(qū)間(μ-σ,μ+σ)內(nèi)的面積為68.268949%。

P{|X-μ|