版權(quán)歸原作者所有,如有侵權(quán),請聯(lián)系我們

[科普中國]-特征點

科學(xué)百科
原創(chuàng)
科學(xué)百科為用戶提供權(quán)威科普內(nèi)容,打造知識科普陣地
收藏

分類顏色特征

顏色特征是一種全局特征,描述了圖像或圖像區(qū)域所對應(yīng)的景物的表面性質(zhì)。一般顏色特征是基于像素點的特征,此時所有屬于圖像或圖像區(qū)域的像素都有各自的貢獻(xiàn)。由于顏色對圖像或圖像區(qū)域的方向、大小等變化不敏感,所以顏色特征不能很好地捕捉圖像中對象的局部特征。另外,僅使用顏色特征查詢時,如果數(shù)據(jù)庫很大,常會將許多不需要的圖像也檢索出來。顏色直方圖是最常用的表達(dá)顏色特征的方法,其優(yōu)點是不受圖像旋轉(zhuǎn)和平移變化的影響,進(jìn)一步借助歸一化還可不受圖像尺度變化的影響,基缺點是沒有表達(dá)出顏色空間分布的信息。

紋理特征紋理特征也是一種全局特征,它也描述了圖像或圖像區(qū)域所對應(yīng)景物的表面性質(zhì)。但由于紋理只是一種物體表面的特性,并不能完全反映出物體的本質(zhì)屬性,所以僅僅利用紋理特征是無法獲得高層次圖像內(nèi)容的。2與顏色特征不同,紋理特征不是基于像素點的特征,它需要在包含多個像素點的區(qū)域中進(jìn)行統(tǒng)計計算。在模式匹配中,這種區(qū)域性的特征具有較大的優(yōu)越性,不會由于局部的偏差而無法匹配成功。作為一種統(tǒng)計特征,紋理特征常具有旋轉(zhuǎn)不變性,并且對于噪聲有較強(qiáng)的抵抗能力。但是,紋理特征也有其缺點,一個很明顯的缺點是當(dāng)圖像的分辨率變化的時候,所計算出來的紋理可能會有較大偏差。

特征描述邊界特征法該方法通過對邊界特征的描述來獲取圖像的形狀參數(shù)。其中Hough變換檢測平行直線方法和邊界方向直方圖方法是經(jīng)典方法。Hough變換是利用圖像全局特性而將邊緣像素連接起來組成區(qū)域封閉邊界的一種方法,其基本思想是點—線的對偶性;邊界方向直方圖法首先微分圖像求得圖像邊緣,然后,做出關(guān)于邊緣大小和方向的直方圖,通常的方法是構(gòu)造圖像灰度梯度方向矩陣。

傅里葉形狀傅里葉形狀描述符(Fourier shape deors)基本思想是用物體邊界的傅里葉變換作為形狀描述,利用區(qū)域邊界的封閉性和周期性,將二維問題轉(zhuǎn)化為一維問題。由邊界點導(dǎo)出三種形狀表達(dá),分別是曲率函數(shù)、質(zhì)心距離、復(fù)坐標(biāo)函數(shù)。

幾何參數(shù)法形狀的表達(dá)和匹配采用更為簡單的區(qū)域特征描述方法,例如采用有關(guān)形狀定量測度(如矩、面積、周長等)的形狀參數(shù)法(shape factor)。在 QBIC 系統(tǒng)中,便是利用圓度、偏心率、主軸方向和代數(shù)不變矩等幾何參數(shù),進(jìn)行基于形狀特征的圖像檢索。
需要說明的是,形狀參數(shù)的提取,必須以圖像處理及圖像分割為前提,參數(shù)的準(zhǔn)確性必然受到分割效果的影響,對分割效果很差的圖像,形狀參數(shù)甚至無法提取。3

特征提取線性投影分析其基本思想是根據(jù)一定的性能目標(biāo)來尋找一線性變換,把原始信號數(shù)據(jù)壓縮到一個低維子空間,使數(shù)據(jù)在子空間中的分布更加緊湊,為數(shù)據(jù)的更好描述提供手段,同時計算的復(fù)雜度得到大大降低。在線性投影分析中,以主分量分析(PCA,或稱K-L變換)和Fisher線性鑒別分析(LDA)最具代表性,圍繞這兩種方法所形成的特征抽取算法,已成為模式識別領(lǐng)域中最為經(jīng)典和廣泛使用的方法。4

線性投影分析法的主要缺點為:需要對大量的已有樣本進(jìn)行學(xué)習(xí),且對定位、光照與物體非線性形變敏感,因而采集條件對識別性能影響較大。

非線性特征抽取核投影方法的基本思想是將原樣本空間中的樣本通過某種形式的非線性映射,變換到一個高維甚至無窮維的空間,并借助于核技巧在新的空間中應(yīng)用線性的分析方法求解。由于新空間中的線性方向也對應(yīng)原樣本空間的非線性方向,所以基于核的投影分析得出的投影方向也對應(yīng)原樣本空間的非線性方向。

評論
科普cuili007
學(xué)士級
2023-01-03