棉花是我國重要的經(jīng)濟(jì)作物和戰(zhàn)略物資之一,新疆地區(qū)占有全國70%以上的植棉面積,產(chǎn)出約90%的皮棉,在棉花生產(chǎn)上具有舉足輕重的地位。
得益于先進(jìn)的制種工藝和高效的栽培耕作管理手段,新疆的棉花生產(chǎn)從大面積精量播種,化學(xué)調(diào)控到最后收獲已經(jīng)基本實現(xiàn)全面機(jī)械化,大大降低了棉農(nóng)的勞動強(qiáng)度,真正實現(xiàn)了棉花科技工作者努力追求的快樂植棉的目標(biāo)。
借助我國自主研發(fā)的北斗定位系統(tǒng),可使播種機(jī)自動在棉田行進(jìn)并進(jìn)行單粒精量播種
成體系的種植模式使得大型化控機(jī)械和無人機(jī)可進(jìn)入棉田實現(xiàn)大面積化學(xué)調(diào)控
到棉花成熟之際,一望無際的棉田是新疆植棉區(qū)的一道風(fēng)景線
大型采棉機(jī)集中采收之后就可進(jìn)行收納運(yùn)輸
但新疆的棉花依然存在一定的問題,比如產(chǎn)量缺口大,品質(zhì)相對低等,許多棉花科研工作者為了解決棉花生產(chǎn)問題,投入了大量的心血,并取得了重要的成果,我們一起來學(xué)習(xí)吧!
王茂軍教授從事棉花基因組學(xué)研究,分析棉花纖維產(chǎn)生的進(jìn)化機(jī)理
涂禮莉教授關(guān)注纖維發(fā)育過程,嘗試?yán)瞄L纖維海島棉基因改良陸地棉
金雙俠教授建立了棉花高效體遺傳轉(zhuǎn)化系統(tǒng)并開發(fā)了系列基因編輯工具,為深入研究棉花基因功能提供了重要手段,為加速棉花分子育種提供了有力工具
華中農(nóng)業(yè)大學(xué)棉花遺傳改良團(tuán)隊的三位老師分別從基因組學(xué)、分子生物學(xué)和生物技術(shù)三個方面出發(fā),為大家講解了棉花生產(chǎn)上的問題,并提出了相對應(yīng)的解決方案。
棉花的作用遠(yuǎn)不止如此,種子豐富的營養(yǎng)元素和特殊的種質(zhì)資源使得棉花有望成為集纖維、食品、觀賞價值于一身的明星作物 。越來越先進(jìn)的人工智能和生物技術(shù),正在為棉花研究添磚加瓦,中國棉花未來可期!
參考論文鏈接
(1)Maojun Wang, Lili Tu, Min Lin, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication, Nature Genetics. 49 (2017) 579–587 (https://www.nature.com/articles/ng.3807)
(2)Maojun Wang, Lili Tu, Daojun Yuan, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense, Nature Genetics. 51 (2019) 224–229. (https://www.nature.com/articles/s41588-018-0282-x)
(3)Maojun Wang, Pengcheng Wang, Lili Tu, et al. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Research. 44 (2016) 4067–4079, https://doi.org/10.1093/nar/gkw238. (https://academic.oup.com/nar/article/44/9/4067/2462395?searchresult=1)
(4)Yang Li, Lili Tu, Filomena A Pettolino, et al. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring.Plant Biotechnology Journal,14(2016)951-963. (https://onlinelibrary.wiley.com/doi/10.1111/pbi.12450)
(5)Fenglin Deng, Lili Tu, Jiafu Tan, et al.GbPDF1 Is Involved in Cotton Fiber Initiation via the Core cis-Element HDZIP2ATATHB2. Plant Physiology, 158 (2012) 890–904, https://doi.org/10.1104/pp.111.186742. (https://academic.oup.com/plphys/article/158/2/890/6109269)
(6)Qiongqiong Wang,Muna Alariqi,Fuqiu Wang, et al.The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnology Journal.18 (2020) 2436-2443. (https://onlinelibrary.wiley.com/doi/10.1111/pbi.13417)
(7)Lei Qin,Jianying Li,Qiongqiong Wang, et al. High-efficient and precise base editing of C?G to T?A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnology Journal. 18 (2019) 45-56. (https://onlinelibrary.wiley.com/doi/10.1111/pbi.13168)
(8)Bo Li,Hangping Rui,Yajun Li, et al. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal. 17 (2019) 1862-1864. (https://onlinelibrary.wiley.com/doi/10.1111/pbi.13147)
(9)Pengcheng Wang, Jun Zhang, Lin Sun, Yizan Ma, Jiao Xu, Sijia Liang, Jinwu Deng, Jiafu Tan, Qinghua Zhang, Lili Tu, Henry Daniell, Shuangxia Jin, Xianlong Zhang. High efficient multi-sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system, Plant Biotechnology Journal, 2018, 16, 137-150(https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.1275)
(10)Jianying Li, Maojun Wang, Yajun Li, Qinghua Zhang, Keith Lindsey, Henry Daniell, Shuangxia Jin*, Xianlong Zhang. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process, Plant Biotechnology Journal, 2019, 17, 435–450(https://onlinelibrary.wiley.com/doi/10.1111/pbi.12988)
出品:科普中國 中國作物學(xué)會 華中農(nóng)業(yè)大學(xué) 光明網(wǎng)
編導(dǎo):馬益贊 徐琴
拍攝:任文武 龔時峰 戴壯
剪輯:龔時峰 戴壯
后期制作:任文武 龔時峰 戴壯
監(jiān)制:張獻(xiàn)龍 程維紅
特別鳴謝:新疆農(nóng)科院經(jīng)濟(jì)作物研究所 孔杰 鄭巨云